
• Relations between entities 
including severity, impact, item 
affected, location modifiers and 
locations are extracted from 
tweets using NER [1]

• Relation annotation was separated 
into 4 categories: impact-place, 
item-impact, impact, severity and 
location modifier-location. [2]
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Social media enables users to connect and share information, news, and 
content with a large network of people. It contains a wealth of knowledge, 
being updated constantly in real-time. Following a natural disaster, people 
turn to social media to share information regarding the damage and 
injuries sustained.

Unlike previous work, we are developing an application to map fine-
grained, individual impacts that are automatically extracted from tweets, 
along with an accurate and informative open-source mapping interface. We 
present a description of the method we are using to georeference, map and 
display the information from the tweets and display them as well as the 
application's functionality.
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• Restrictions on number of calls to Open AI Api [8]
• Open AI Api [8] is very slow to retrieve embeddings
• Retrieving GeoNames instances is slow
• Work in progress – unsure as to how well our

method will work

Pipeline

• Retrieve first instance from 
Geonames [3], (a place name data 
base) local database stored in 
PostGreSQL [4]  using queries, 
matching the place name extracted 
using NER from the text

• This is a temporary solution whilst 
we work on the place name 
disambiguation

• Convert coordinates to point 
geometries and stored in a 
GeoPandas Dataframe

• Openlayers [5] connects from Javascript Application to Geoserver [6] (a 
geographical data server), retrieving GeoJSON data and creates a vector 
layer on the map

• Icons are allocated based on the previous definition of the impact type

The task of correctly identifying a place from a set of places sharing a 
common name. [7]
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Proposed Method:
• Retrieve embedding for tweet text (E1)
• Retrieve all matching instances from GeoNames 

together with other information and retrieve the 
embeddings (E2)

• Calculate the cosine distance between E1 and 
E2.. Find the instance of E2 with the shortest 
cosine distance to E1

• Embeddings Calculated using both Open AI [6] 
and Bert

• Refine geolocations of tweets on the map by 
incorporating location modifiers creating models 
for specific spatial terms using similar approach to 
[9] but applying the latest deep learning methods

• Refine impact categorization 
• Evaluation of the user interface – please email 

Lydia at pricelydia776@gmail.com if you would 
like to participate 
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